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Abstract
To prove global existence for solutions of m-component reaction–diffusion
systems presents fundamental difficulties in the case in which some components
of the system satisfy Neumann boundary conditions while others satisfy
nonhomogeneous Dirichlet boundary conditions and nonhomogeneous Robin
boundary conditions. The purpose of this paper is to prove the existence of a
global solution using a single inequality for the polynomial growth condition
of the reaction terms. Our technique is based on the construction of polynomial
functionals. This result generalizes those obtained recently by Kouachi et al (at
press), Kouachi (2002 Electron. J. Diff. Eqns 2002 1), Kouachi (2001 Electron.
J. Diff. Eqns 2001 1) and independently by Malham and Xin (1998 Commun.
Math. Phys. 193 287).

PACS numbers: 82.40.Ck, 02.30.Jr, 02.10.Yn
Mathematics Subject Classification: 35K45, 35K57

1. Introduction

Recently, global existence for solutions of nonlinear parabolic systems of partial differential
equations has been the object of a great deal of research. One of the main results of these
studies was obtained by Morgan [5], where all the components satisfy the same boundary
conditions (Neumann or Dirichlet), and where again the reaction terms are polynomially
bounded and satisfy a set of m inequalities. In 1993, Hollis [6] completed the work of Morgan
and established the global existence in the presence of mixed boundary conditions if certain
structure requirements are placed on the system. The results obtained in this work represent the
proof of global existence of solutions with Neumann, Dirichlet, nonhomogeneous Robin and
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a mixture of Dirichlet with nonhomogeneous Robin conditions, and where again the reaction
terms are polynomially growth but satisfy a single inequality. The importance of these results
is that many systems satisfy our conditions and Morgan and Hollis’s ones. Moreover, there are
some systems that satisfy our conditions but not theirs (Morgan and Hollis); see, for instance,
the last example of Kouachi’s article [2].

All along the paper, we will use the following notations and assumptions: we denote by
m � 2 the number of equations of the system (i.e. m-component), and for all i = 1, . . . , m:

∂ui

∂t
− ai�ui = fi(U) in � × {t > 0} (1.1)

with the boundary conditions

λiui + (1 − λi)∂ηui = βi on ∂� × {t > 0} (1.2)

and the initial data

ui(0, x) = u0
i (x) on �. (1.3)

(i) For nonhomogeneous Robin boundary conditions, we use

0 < λi < 1, βi � 0, i = 1, . . . , m.

(ii) For homogeneous Neumann boundary conditions, we use

λi = βi = 0, i = 1, . . . , m.

(iii) For homogeneous Dirichlet boundary conditions, we use

1 − λi = βi = 0, i = 1, . . . , m.

(iv) For a mixture of homogeneous Dirichlet with nonhomogeneous Robin boundary
conditions, we use ∃i = 1, . . . , m : 1 − λi = βi = 0 and 0 < λj < 1, βj � 0, j =
1, . . . , m with i �= j ,

where U = (ui)
m
i=1 and ai are positive constants for all i = 1, . . . , m; i = 1, . . . , m : 0 �

λi � 1 and βi � 0 are in C1(∂� × R+).
The initial data are assumed to be non-negative.

(A1) The functions fi are continuously differentiable on R
m
+ for all i = 1, . . . , m, satisfying

fi(u1, . . . , ui−1, 0, ui+1, . . . , um) � 0, for all ui � 0; i = 1, . . . , m.
(A2) We suppose that the functions fi are of polynomial growth (see Hollis and Morgan [7]).

This means that for all i = 1, . . . , m, there exists an integer N � 1 such that

|fi(U)| � C1

(
1 +

m∑
i=1

ui

)N

on (0, +∞)m, (1.4)

(A3) and satisfy

m−1∑
i=1

Difi(U) + fm(U) � C2

(
1 +

m∑
i=1

ui

)
(1.5)

for all ui � 0, i = 1, . . . , m, and all constants Di � Di, i = 1, . . . , m, where
Di, i = 1, . . . , m, are sufficiently large positive constants, and C1 and C2 are the positive
and uniformly bounded functions defined on R

m
+ .
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Put Aij = ai+aj

2
√

aiaj
for all i, j = 1, . . . , m. Let θi, i = 1, . . . , m − 1, be positive constants

such that

Kl
l > 0; l = 2, . . . , m, (1.6)

where

Kr
l = Kr−1

r−1 · Kr−1
l − [Hr−1

l

]2
, r = 3, . . . , l,

H r
l = det

1�i,j�l

(
(ai,j ) i �=l,...,r+1

j �=l−1,...,r

)
· k=r−2

�
k=1

(det k)2(r−k−2)

, r = 3, . . . , l − 1,

K2
l = a1al

l−1
�
k=1

θ
2(pk+1)2

k · m−1
�
k=l

θ
2(pk+2)2

k︸ ︷︷ ︸
positivevalue

·
[

l−1
�
k=1

θ2
k − A2

1l

]

and

H 2
l = a1

√
a2alθ

2(p1+1)2

1

l−1
�
k=2

θ
(pk+2)2+(pk+1)2

k · m−1
�
k=l

θ
2(pk+2)2

k︸ ︷︷ ︸
positivevalue

· [θ2
1 A2l − A12A1l

]
.

Here, det
1�i,j�l

(
(ai,j ) i �=l,...,r+1

j �=l−1,...,r

)
denotes the determinant of r square symmetric matrix obtained

from (ai,j )1�i,j�m by removing the (r + 1)th, (r + 2)th, . . . , lth rows and the rth, (r +
1)th, . . . , (l − 1)th columns. The elements of the matrix are

aij = ai + aj

2
θ

p2
1

1 · · · θp2
(i−1)

(i−1) θ
(pi+1)2

i · · · θ(p(j−1)+1)2

j−1 θ
(pj +2)2

j · · · θ(p(m−1)+2)2

(m−1) . (1.7)

The main result of this paper, to be proved in section 4, reads as follows:

Theorem 1. Suppose that the functions fi, i = 1, . . . , m, are of polynomial growth and
satisfy condition (1.5) for some positive constants Di, i = 1, . . . , m, sufficiently large. Let
(u1(t, .), u2(t, .), . . . , um(t, .)) be a solution of (1.1)–(1.3) and let

L(t) =
∫

�

Hpm
(u1(t, x), u2(t, x), . . . , um(t, x)) dx, (1.8)

where

Hpm
(u1, . . . , um) =

pm∑
pm−1=0

· · ·
p2∑

p1=0

Cpm−1
pm

· · · Cp1
p2

θ
p2

1
1 · · · θp2

(m−1)

(m−1)u
p1
1 u

p2−p1
2 · · · upm−pm−1

m ,

with pm being a positive integer and C
pi
pj

= pj !
pi !(pj −pi)!

.
Then the functional L is uniformly bounded on the interval [0, T ∗], T ∗ < Tmax.

Corollary 1. Under the assumptions of theorem 1, all solutions of (1.1)–(1.3) with positive
initial data in L∞(�) are in L∞(0, T ∗;Lp(�)) for some p � 1.

Proposition 1. Under the assumptions of theorem 1 and that condition (1.4) is satisfied, all
solutions of (1.1)–(1.3) with positive initial data in L∞(�) are global for some p > Nn

2 .
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2. Previous results

The usual norms in spaces Lp(�), L∞(�) and C(�) are denoted, respectively, by

‖u‖p
p = 1

|�|
∫

�

|u(x)|p dx, (2.1a)

‖u‖∞ = max
x∈�

|u(x)|. (2.1b)

In the two-component case, where f1(u1; u2) = −f2(u1; u2) = −u1u
β

2 , Alikakos [8]
established the global existence and L∞-bounds of solutions when 1 � β < n+2

n
. Masuda [9]

showed that the solutions to this system exist globally for every β � 1. Haraux and Youkana
[10] simplified the demonstration of Masuda [9] by using techniques based on Lyapunov
functionals. They could handle nonlinearities f1(u1; u2) = −f2(u1; u2) = −u1F(u2)

satisfying the condition

lim
s→+∞

[
log(1 + F(s))

s

]
= 0 (2.2)

which means that F(s) is of sub-exponential growth. Kouachi and Youkana [11] generalized
the results of Haraux and Youkana [10]; they added −c�u1 to the right-hand side of
the second equation of the system with the reaction terms f1(u1; u2) = −λf (u1; u2) and
f2(u1; u2) = +µf (u1; u2) requiring the condition

lim
s→+∞

[
log(1 + f (r + s))

s

]
< α∗ for r > 0,

with

α∗ = 2a1a2

n(a1 − a2)2
∥∥u0

1

∥∥
∞

min

{
λ

µ
,
(a1 − a2)

c

}
,

where the positive diffusion coefficients a1, a2 satisfy a1 > a2 and c, λ, µ are positive
constants. This condition reflects the weak exponential growth of the reaction term f .

In [12], Hollis, Martin and Pierre established the global existence of positive solutions for
the system with the boundary conditions (1.2), i = 1, 2, β1, β2 � 0 and 0 < λ1; λ2 < 1, λ1 =
λ2 = 1, or λ1 = λ2 = 0. Also β1 = β2 = 0 if λ1 = λ2 = 0 and where again the reaction terms
are continuously differentiable functions and satisfy the conditions: for each r > 0 there are
numbers L0(r) and µ0(r) such that{

γ � 1, |f2(u1, u2)| � L0(r)(1 + u2)
γ

f1(u1, u2) + f2(u1, u2) � µ0(r),

with r � u2. (L0(r) and µ0(r) are independent of t > 0.)
Moreover, the solution is uniformly bounded in t.
But under the conditions of the reaction term that we use in studying m-component,

Kouachi has studied two-component (see Kouachi [3]), and independently by Malham and
Xin [4], three-component (see Kouachi [2]), but he could not generalize m-component. After
we studied four-component (see Kouachi et al [1]), modified Dodgson’s algorithm with a proof
(see Kouachi et al [13]), we could simply study five-component and deduce m-component.

Many authors dealt with the m-component system (see [5–7, 14–19]).
In [5], Morgan generalized the results of Hollis, Martin and Pierre (first applied to two-

component reaction–diffusion systems [12]) to establish the global existence for solutions of
m-component systems (m � 2) with the boundary conditions (1.2), where

0 < λi < 1 or λi = 1 and βi � 0, i = 1, . . . , m (2.3)
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or

λi = βi = 0, i = 1, . . . , m (2.4)

and where the reaction terms are polynomially bounded and satisfy, in the case of our system,
the following conditions:

k∑
j=1

αkjfj (U) � C3

(
1 +

m∑
i=1

ui

)
for U ∈ R

m
+ , k = 1, . . . , m, (2.5)

where αkj is a positive real, C3 constant that is independent of U. |fi(., ., U)|, i = 1, . . . , m,
is bounded above by a polynomial in u1, u2, . . . , um.

Formula (2.5) is a common form of Morgan’s ‘Intermediate Sums’ condition. Although
it is simple and arises in many applications and is used technically in an extension of a duality
argument, it is a set of m inequalities. But our assumption (1.5) is more applied because it is
one inequality only.

Martin and Pierre [20] and Hollis [6] extended the results, under the same conditions, to
the boundary conditions (1.2) where in (2.3), they took

0 � λi � 1 or λi = 1 and βi � 0, i = 1, . . . , m

but they imposed conditions of the form (2.5), at the same time, on the reaction terms whose
corresponding components of the solution satisfy Neumann boundary conditions and on the
others which satisfy Dirichlet boundary conditions. In other terms they imposed to the reaction
terms to satisfy a set of m inequalities.

3. Preliminary observations

It is well known that to prove the global existence of solutions to (1.1)–(1.3) (see Henry [21]),
it suffices to derive a uniform estimate of ‖fi(u1, u2, . . . , um)‖p, i = 1, . . . , m, on [0; Tmax[ in
the space Lp(�) for some p > n/2. Our aim is to construct polynomial Lyapunov functionals
allowing us to obtain Lp-bounds on ui that lead to global existence for all i = 1, . . . , m. Since
the functions fi are continuously differentiable on R

m
+ for all i = 1, . . . , m, then for any initial

data in C(�), it is easy to check directly their Lipschitz continuity on bounded subsets of the
domain of a fractional power of the operator

O = −




a1� 0 · · · 0
0 a2� · · · 0
...

...
. . .

...

0 0 · · · am�


 . (3.1)

Under these assumptions, the following local existence result is well known (see Friedman
[22] and Pazy [23]).

Remark 1. Assumption (A1) contains smoothness and quasipositivity conditions that
guarantee local existence of solutions and non-negativity of solutions as long as they exist, via
the maximum principle (see Smoller [24]). Assumption (A3) is the usual polynomial growth
condition necessary to obtain uniform bounds from p-dependent LP estimates. (See Hollis
and Morgan [16].)

Proposition 2. The system (1.1)–(1.3) admits a unique, classical solution (u1; u2; . . . , um)

on(0, Tmax[×�.
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If Tmax < ∞ then lim
t↗Tmax

m∑
i=1

‖ui(t, .)‖∞ = ∞, (3.2)

where Tmax
(∥∥u0

1

∥∥
∞,
∥∥u0

2

∥∥
∞, . . . ,

∥∥u0
m

∥∥
∞
)

denotes the eventual blow-up time.

Remark 2. This proposition seems to be well-known (Henry [21]). Nevertheless, we could
not find it in the literature in the form stated here and in the book of Rothe ([25, pp 111–8
with proof]). Usually, the explosion property (3.2) is only stated for some norm involving
smoothness, but not the L∞-norm.

4. Proof of the main result

For the proof of theorem 1, we need some preparatory lemmas, which are proved in the
appendix.

Lemma 1. Let Hpm
be the homogeneous polynomial defined by (1.8). Then

∂u1Hpm
= pm

pm−1∑
pm−1=0

· · ·
p2∑

p1=0

C
pm−1
pm−1 · · ·Cp1

p2
θ

(p1+1)2

1 · · · θ(p(m−1)+1)2

(m−1)

× u
p1
1 u

p2−p1
2 u

p3−p2
3 · · · u(pm−1)−pm−1

m , (4.1)

for all i = 2, . . . , m − 1:

∂ui
Hpm

= pm

pm−1∑
pm−1=0

· · ·
p2∑

p1=0

C
pm−1
pm−1 · · · Cp1

p2
θ

p2
1

1 · · · θp2
(i−1)

i−1 θ
(pi+1)2
i · · · θ(p(m−1)+1)2

(m−1)

× u
p1
1 u

p2−p1
2 u

p3−p2
3 · · · u(pm−1)−pm−1

m (4.2)

and

∂um
Hpm

= pm

pm−1∑
pm−1=0

· · ·
p2∑

p1=0

C
pm−1
pm−1 · · · Cp2

p3
Cp1

p2
θ

p2
1

1 θ
p2

2
2 · · · θp2

(m−1)

(m−1)

× u
p1
1 u

p2−p1
2 u

p3−p2
3 · · · u(pm−1)−pm−1

m . (4.3)

Lemma 2. The second partial derivatives of Hpm
are given by

∂u2
1
Hn = pm(pm − 1)

pm−2∑
pm−1=0

· · ·
p3∑

p2=0

p2∑
p1=0

C
pm−1
pm−2 · · · Cp1

p2

× θ
(p1+2)2

1 · · · θ(p(m−1)+2)2

(m−1) u
p1
1 u

p2−p1
2 · · · u(pm−2)−pm−1

m , (4.4)

for all i = 2, . . . , m − 1 :

∂u2
i
Hn = pm(pm − 1)

pm−2∑
pm−1=0

· · ·
p2∑

p1=0

C
pm−1
pm−2 · · · Cp1

p2

× θ
p2

1
1 θ

p2
2

2 · · · θp2
i−1

i−1 θ
(pi+2)2

i · · · θ(p(m−1)+2)2

(m−1) · u
p1
1 u

p2−p1
2 · · · u(pm−2)−pm−1

m , (4.5)
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for all 2 � i < j � m :

∂uiuj
Hn = pm(pm − 1)

pm−2∑
pm−1=0

· · ·
p2∑

p1=0

C
pm−1
pm−2 · · ·Cp1

p2

× θ
p2

1
1 · · · θp2

i−1
i−1 θ

(pi+1)2

i · · · θ(pj−1+1)2

j−1 θ
(pj +2)2

j · · · θ(p(m−1)+2)2

(m−1)

× u
p1
1 u

p2−p1
2 · · · u(pm−2)−pm−1

m . (4.6)

Finally,

∂u2
m
Hn = pm(pm − 1)

pm−2∑
pm−1=0

· · ·
p2∑

p1=0

C
pm−1
pm−2 · · ·Cp1

p2
θ

p2
1

1 · · · θp2
(m−1)

(m−1) · u
p1
1 u

p2−p1
2 · · · u(pm−2)−pm−1

m .

(4.7)

Lemma 3. Let A be the m square symmetric matrix defined by A = (aij )1�i,j�m, then we get
this property3 

Km
m = det m · k=m−2

�
k=1

(det k)2(m−K−2)

, m > 2

K2
2 = det 2,

(4.8)

where

Kl
m = Kl−1

l−1 · Kl−1
m − (Hl−1

m

)2
, l = 3, . . . , m, (4.8a)

Hl
m = det

1�i,j�m

(
(ai,j ) i �=m,...,l+1

j �=m−1,...,l

)
· k=l−2

�
k=1

(det k)2(l−K−2)

, l = 3, . . . , m − 1, (4.8b)

K2
m = a11amm − (a1m)2, (4.8c)

H 2
m = a11a2m − a12a1m. (4.8d)

Proof of theorem 1. Differentiating L with respect to t yields

L′(t) =
∫

�

∂tHpm
dx

=
∫

�

m∑
i=1

∂ui
Hpm

∂ui

∂t
dx

=
∫

�

m∑
i=1

∂ui
Hpm

(ai�ui + fi) dx

=
∫

�

m∑
i=1

ai∂ui
Hpm

�ui dx +
∫

�

m∑
i=1

∂ui
Hpm

fi dx

= I + J.

I =
∫

�

m∑
i=1

ai∂ui
Hpm

�ui dx

J =
∫

�

m∑
i=1

∂ui
Hpm

fi dx.

(4.9)

3 This property is in the domain of linear algebra.
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Using Green’s formula, we get I = I1 + I2, where

I1 =
∫

∂�

m∑
i=1

ai∂ui
Hpm

∂ηui ds (4.10)

and

I2 = −
∫

�

[((ai + aj

2
∂uj ui

Hpm

)
1�i,j�m

)
T

]
· T dx (4.11)

for p1 = 0, . . . , p2, p2 = 0, . . . , p3, . . . , pm−1 = 0, . . . , pm − 2 and T = (∇u1,∇u2,

. . . ,∇um)t . �

Applying lemmas 1 and 2, we get(ai + aj

2
∂uj ui

Hpm

)
1�i,j�m

= pm(pm − 1)

pm−2∑
pm−1=0

· · ·
p2∑

p1=0

C
pm−1
pm−2 · · ·Cp1

p2

(
(aij )1�i,j�m

)
u

p1
1 · · · u(pm−2)−pm−1

m

(4.12)

when (aij )1�i,j�m is a matrix defined in formula (1.7).
We prove that there exists a positive constant C4 independent of t ∈ [0, Tmax[ such that

I1 � C4 for all t ∈ [0, Tmax[ (4.13)

and that

I2 � 0 (4.14)

for several boundary conditions.

(i) If i = 1, . . . , m: 0 < λi < 1, using the boundary conditions (1.2) we get

I1 =
∫

∂�

m∑
i=1

ai∂ui
Hpm

(γi − αiui) ds,

where αi = λi

1−λi
and γi = βi

1−λi
, i = 1, . . . , m. Since H(U) = ∑m

i=1 ai∂ui
Hpm

(γi −
αiui) = Pn−1(U)−Qn(U), where Pn−1 and Qn are polynomials with positive coefficients
and respective degrees n − 1 and n and since the solution is positive, then

lim sup∑m
i=1 |ui |→+∞

H(U) = −∞ (4.15)

which prove that H is uniformly bounded on R
m
+ and consequently (4.13).

(ii) If ∀i = 1, . . . , m : λi = 0, then I1 = 0 on [0, Tmax[.
(iii) The case of homogeneous Dirichlet conditions is trivial, since in this case the positivity

of the solution on [0, Tmax[×� implies ∂ηui � 0,∀i = 1, . . . , m, on [0, Tmax[×∂�.
Consequently, one gets again (4.13) with C4 = 0.

(iv) If one or two or three . . . (m − 1) of the components of the solution satisfy homogeneous
Dirichlet boundary conditions and the other (others) satisfies the nonhomogeneous Robin
conditions, for example, u1 = 0, λiui +(1−λi)∂ηui = βi, i = 2, . . . , m on [0, Tmax[×∂�

with 0 < λi < 1, βi � 0, i = 2, . . . , m, then following the same reasoning as above we
get

lim sup∑m
i=2 |ui |→+∞

H(0, u2, . . . , um) = −∞ (4.16)

and then (4.13).



Proof of existence of global solutions 12343

Now we prove (4.14). (aij )1�i,j�m is a matrix defined in formula (1.7).
The quadratic forms (with respect to ∇ui, i = 1, . . . , m) associated with the matrices

(aij )1�i,j�m, p1 = 0, . . . , p2, p2 = 0, . . . , p3, . . . , pm−1 = 0, . . . , pm − 2 are positive since
their main determinants det 1, det 2, . . . det m are also positive. To see this, we have the
following:

(*) det 1 = a1θ
(p1+2)2

1 θ
(p2+2)2

2 · · · θ(p(m−1)+2)2

(m−1) > 0 for p1 = 0, . . . , p2, p2 = 0, . . . ,

p3 · · · pm−1 = 0, . . . , pm − 2.
(**) According to lemma 3, we get

det 2 = K2
2 = a1a2θ

2(p1+1)2

1

m−1
�
k=2

θ
2(pk+2)2

k

[
θ2

1 − A2
12

]
,

using (1.6) for l = 2 we get det 2 > 0.
(***) Again according to lemma 3, we have

K3
3 = det 3 det 1,

but det 1 > 0, thus sign(K3
3 ) = sign(det 3).

Using (1.6) for l = 3 we get det 3 > 0.
(****) We suppose det k > 0 k = 1, 2, . . . , l − 1 and prove that det l > 0

det k > 0, k = 1, . . . , (l − 1) ⇒ k=l−2
�
k=1

(det k)2(l−K−2)

> 0 (4.17)

from lemma 3 Kl
l = det l · �k=l−2

k=1 (det k)2(l−K−2)

, and from (4.17), we get sign
(
Kl

l

) =
sign(det l) but Kl

l > 0, from (1.6), thus det l > 0.

We get (4.14).
Now we prove J -bounded (4.9).
Substituting the expressions of the partial derivatives given by lemma 1 into the second

integral (4.9) yields

J =
∫

�


pm

pm−1∑
pm−1=0

· · ·
p2∑

p1=0

C
pm−1
pm−1 · · ·Cp1

p2
u

p1
1 u

p2−p1
2 · · · upm−1−pm−1

m




×

m−1

�
i=1

θ
(pi+1)2

i f1 +
m−1∑
j=2

j−1
�
k=1

θ
p2

k

k

m−1
�
i=j

θ
(pi+1)2

i fj +
m−1
�
i=1

θ
p2

i

i fm


 dx

=
∫

�


pm

pm−1∑
pm−1=0

· · ·
p2∑

p1=0

C
pm−1
pm−1 · · · uC

p1p1
p21 u

p2−p1
2 · · · upm−1−pm−1

m




×

�m−1

i=1 θ
(pi+1)2

i

�m−1
i=1 θ

p2
i

i

f1 +
m−1∑
j=2

�
j−1
k=1θ

p2
k

k �m−1
i=j θ

(pi+1)2

i

�m−1
i=1 θ

p2
i

i

fj + fm


 m−1

�
i=1

θ
p2

i

i dx

=
∫

�


pm

pm−1∑
pm−1=0

· · ·
p2∑

p1=0

C
pm−1
pm−1 · · · Cp1

p2
u

p1
1 u

p2−p1
2 · · · upm−1−pm−1

m




×

m−1

�
i=1

θ
(pi+1)2

i

θ
p2

i

i

f1 +
m−1∑
j=2

m−1
�
i=j

θ
(pi+1)2

i

θ
p2

i

i

fj + fm


 m−1

�
i=1

θ
p2

i

i dx.
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Using condition (1.5), we deduce

J � C5

∫
�


 pm−1∑

pm−1=0

· · ·
p2∑

p1=0

Cp1
p2

· · · Cpm−1
pm−1u

p1
1 u

p2−p1
2 · · · upm−1−pm−1

m

(
1 +

m∑
i=1

ui

) dx.

To prove that the functional L is uniformly bounded on the interval [0, T ∗], we first write
pm−1∑

pm−1=0

· · ·
p2∑

p1=0

Cp1
p2

· · · Cpm−1
pm−1u

p1
1 u

p2−p1
2 · · · upm−1−pm−1

m

(
1 +

m∑
i=1

ui

)
= Rpm

(U) + Spm−1(U),

where Rpm
(U) and Spm−1(U) are two homogeneous polynomials of degrees pm and pm − 1,

respectively. First, since the polynomials Hpm
and Rpm

are all of degree pm, there exists a
positive constant C6 such that∫

�

Rpm
(U) dx � C6

∫
�

Hpm
(U) dx, (4.18)

then applying Hölder’s inequality to the integral
∫
�

Spm−1(U) dx, one gets∫
�

Spm−1(U) dx � (meas �)
1

pm

(∫
�

(
Spm−1(U)

) pm
pm−1 dx

) pm−1
pm

.

Since for all u1, u2, . . . , um−1 � 0 and um > 0,(
Spm−1(U)

) pm
pm−1

Hpm
(U)

=
(
Spm−1(x1, x2, . . . , xm−1, 1)

) pm
pm−1

Hpm
(x1, x2, . . . , xm−1, 1)

,

where ∀i ∈ {1, 2, . . . , m − 1} : xi = ui

ui+1
and

lim
xi→+∞

(
Spm−1(x1, x2, . . . , xm−1, 1)

) pm
pm−1

Hpm
(x1, x2, . . . , xm−1, 1)

< +∞,

one asserts that there exists a positive constant C7 such that(
Spm−1(U)

) pm
pm−1

Hpm
(U)

� C7, for all u1, u2, . . . , um � 0. (4.19)

Hence, the functional L satisfies the differential inequality

L′(t) � C8L(t) + C9L
pm−1
pm (t),

which for Z = L
1

pm can be written as

pmZ′ � C8Z + C9. (4.20)

A simple integration gives the uniform bound of the functional L on the interval [0, T ∗]; this
ends the proof of the theorem. �

Proof of corollary 1. The proof of this corollary is an immediate consequence of theorem 1
and the inequality∫

�

(
m∑

i=1

ui(t, x)

)p

dx � C10L(t) on [0, T ∗], (4.21)

for some p � 1. �

Proof of proposition 1. From corollary 1, there exists a positive constant C11 such that∫
�

(
m∑

i=1

ui(t, x) + 1

)p

dx � C11 on [0, Tmax[. (4.22)
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From (1.4) we have

∀i ∈ {1, 2, . . . , m} :

|fi(U)| p

N � C12(U)

(
m∑

i=1

ui(t, x)

)p

on [0, Tmax[×�.
(4.23)

Since u1, u2, . . . , um are in L∞(0, T ∗;Lp(�)) and p

N
> n

2 , then from the preliminary
observations the solution is global. �

5. Examples

In this section, we will examine two particular examples of biochemical and chemical models.
In order to illustrate the applicability of corollary 1 and proposition 1, we assume that all
reactions take place in a bounded domain � with a smooth boundary ∂�.

Example 1. Let us begin with the following reaction:

U1 + U2

k1

�
k2

U3, U1 + U4

k3

�
k4

U5, U2 + U6

k5

�
k6

U4. (5.1)

This leads to the six-component reaction–diffusion system:

∂u1

∂t
− a1�u1 = −k1u1u2 − k3u1u4 + k2u3 + k4u5,

∂u2

∂t
− a2�u2 = −k1u1u2 + k2u3 − k5u2u6 + k6u4,

∂u3

∂t
− a3�u3 = k1u1u2 − k2u3 + k5u2u6 − k6u4,

∂u4

∂t
− a4�u4 = −k3u1u4 + k4u5 + k5u2u6 − k6u4,

∂u5

∂t
− a5�u5 = k3u1u4 − k4u5 − k5u2u6 + k6u4,

∂u6

∂t
− a6�u6 = −k5u2u6 + k6u4.

(5.2)

In the special case k5 = k6 = 0, U1, U2, U3, U4, U5 may represent hemoglobin Hb, O2,
HbO2, CO2 and HbCO2. Hollis [6] established global existence provided that

(1) u3 satisfies the same type of boundary conditions as either u1 or u2 and
(2) u5 satisfies the same type of boundary condition as either u1 or u4. The results obtained in

Kouachi [2] and in Kouachi et al [1] are not applicable. Our generalization is summarized
as follows.

Proposition 3. Solutions of (5.2) with non-negative uniformly bounded initial data and
boundary conditions (1.2) exist globally.

Proof. Condition (1.5) is satisfied for the six-component system when choosing D3 < D2

and 0 < D5 − D4 < D1. Then, corollary 1 implies that u1, u2, u3, u4, u5 and u6 are in
L∞(0, T ∗;LN(�)) for all N � 1. So, solutions of (5.2) exist globally. �

Example 2. We next consider a general reaction mechanism of the form:

µ1R1 + µ2R2 + · · · + µrRr

kf

�
kr

ν1P1 + ν2P2 + · · · + ν�P�, (5.3)
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where Ri and Pi represent reactant and product species, respectively, and µi, νi are positive
constants for each i. Now, if we set ui = [Ri] and vi = [Pi] and let kf , kr be the (non-
negative) forward and reverse reaction rates, respectively, then we may model the process by
the application of the law of conservation of mass and the second law of Fick (flow) (see
Kouachi [26]) with the following reaction–diffusion system:


∂ui

∂t
− ∇ · (ai∇ui) = µi


kr

�∏
j=1

v
νj

j − kf

r∏
j=1

u
µj

j


 , i = 1, . . . , r

∂vi

∂t
− ∇ · (ar+i∇vi) = νi


kf

r∏
j=1

u
µj

j − kr

�∏
j=1

v
νj

j


 , i = 1, . . . , �,

(5.4)

with boundary conditions (1.2) and positive initial data in L∞(�).
In the special case when r = 2 and � = 1, the special case µ1 = µ2 = ν1 = 1 has been

studied by Rothe (see [25, p 157]) under homogeneous Neumann boundary conditions where
he showed that Tmax = ∞ if n � 5. Morgan [5] generalized the results of Rothe for every
integer n � 1 and when all the components satisfy the same boundary conditions (Neumann
or Dirichlet). Hollis [6] completed the work of Morgan and established global existence if u3

satisfies the same type of boundary conditions as either u1 or u2. But if boundary conditions
of different types are imposed on u1 and u2, the global existence follows regardless of the type
of boundary condition that is imposed on u3. Recently, Kouachi has proved, in [2], the global
existence of solutions with boundary conditions (1.2) when µ1 + µ2 � 1 or ν1 � 1, and as a
completion to this, we have proved the global existence of the system when r = 2 and � = 2,
in Kouachi et al [1] such that µ1 + µ2 � 1 or ν1 + ν2 � 1.

By applying the obtained results on our system, we get the following proposition:

Proposition 4. Solutions of (5.4) with non-negative uniformly bounded initial data (1.3) and
nonhomogeneous boundary conditions (1.2) are positive and exist globally for every positive
constant µi, i = 1, . . . , r , and νi, i = 1, . . . , �, such that min

{∑r
i=1 µi,

∑�
i=1 νi

}
� 1.

Proof. We remark that (1.4) for this system is satisfied for all positive constants µi, i =
1, . . . , r , and νi, i = 1, . . . , �, whenever

N = max

{
r∑

i=1

µi,

�∑
i=1

νi

}
, (5.5)

and condition (1.5) is trivial when
∑r

i=1 µi � 1 by choosing
∑r+�−1

i=r+1 Di + 1 �∑r
i=1 Di , and

by applying Young’s inequality to the term
∏r

j=1 u
µj

j . In the case
∑�

i=1 νi � 1, it is also a trivial

application of Young’s inequality to the term
∏�

j=1 v
νj

j and choosing
∑r

i=1 Di �∑r+�−1
i=r+1 Di+1

(see [3] for more details). Then, corollary 2 implies that all components of the solution are in
L∞(0, T ∗;Ln(�)) for all n � 1, then Tmax = +∞. �

Appendix

Proof of lemma 1. Differentiating Hpm
with respect to u1 yields

∂u1Hpm
=

pm∑
pm−1=1

· · ·
p3∑

p2=1

p2∑
p1=1

p1C
pm−1
pm

· · · Cp2
p3

Cp1
p2

θ
p2

1
1 θ

p2
2

2 · · · θp2
(m−1)

(m−1)

× u
p1−1
1 u

p2−p1
2 u

p3−p2
3 · · · upm−pm−1

m .
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Using the fact that

piC
pi

pi+1
= pi+1C

pi−1
pi+1−1 (A.1)

for all i = 1, . . . , m − 1 we get

∂u1Hpm
= pm

pm∑
pm−1=1

· · ·
p3∑

p2=1

p2∑
p1=1

C
pm−1−1
pm−1 · · ·Cp2−1

p3−1C
p1−1
p2−1θ

p2
1

1 θ
p2

2
2 · · · θp2

(m−1)

(m−1)

× u
p1−1
1 u

p2−p1
2 u

p3−p2
3 · · · upm−pm−1

m ,

while changing in the sums the indices pi − 1 by pi for all i = 1, . . . , m− 1, we deduce (4.1).
For formulae (4.2) and (4.3) and differentiating Hpm

with respect to ui, i = 2, . . . , m, gives

∂ui
Hn =

pm∑
pm−1=1

· · ·
pi+1∑
pi=1

· · ·
p2∑

p1=0

(pi − pi−1)C
pm−1
pm

· · ·Cpi−1
pi

· · · Cp1
p2

θ
p2

1
1 · · · θp2

(m−1)

(m−1)

× u
p1
1 u

p2−p1
2 · · · upi−pi−1−1

i · · · upm−pm−1
m .

Taking account of

Cpi−1
pi

= Cpi−pi−1
pi

, pi−1 = 0, . . . , pi − 1 and pi = 1, . . . , pi+1 (A.2)

using (A.1) and changing the index pi − 1 by pi for all i = 1, . . . , m − 1, we get (4.2) and
(4.3). �

Proof of lemma 2. Differentiating ∂u1Hpm
, given by formula (4.1), with respect to u1 yields

∂u2
1
Hpm

= pm

pm−1∑
pm−1=1

· · ·
p2∑

p1=1

p1C
pm−1
pm−1 · · · Cp1

p2
θ

(p1+1)2

1 · · · θ(p(m−1)+1)2

(m−1)

× u
p1−1
1 u

p2−p1
2 · · · u(pm−1)−pm−1

m .

Using (A.1) and while changing in the sums the indices pi − 1 by pi for all i = 1, . . . , m − 1,
we get (4.4).

For all i = 2, . . . , m − 1,

∂u2
i
Hpm

= pm

pm−1∑
pm−1=1

· · ·
pi+1∑
pi=1

· · ·
p2∑

p1=0

(pi − pi−1)C
pm−1
pm−1 · · ·Cpi−1

pi
· · · Cp1

p2

× θ
p2

1
1 · · · θp2

(i−1)

i−1 θ
(pi+1)2
i · · · θ(p(m−1)+1)2

(m−1) u
p1
1 u

p2−p1
2 · · · upi−pi−1−1

3 · · · u(pm−1)−pm−1
m .

Applying (A.2) and then (A.1), we get (4.5).
Differentiating ∂ui

Hpm
given by formula (4.2) with respect to uj yields

∂uj ui
Hpm

= ∂uj

(
∂ui

Hn

)
= pm

pm−1∑
pm−1=1

· · ·
pi+1∑
pi=1

· · ·
pj+1∑
pj =1

· · ·
p2∑

p1=0

(pj − pj−1)C
pm−1
pm−1 · · · Cpi−1

pi
· · · Cpj−1

pj · · ·Cp1
p2

× θ
p2

1
1 · · · θp2

j

j · · · θ(pi+1)2

i · · · θ(p(m−1)+1)2

(m−1)

× u
p1
1 u

p2−p1
2 · · · upj −pj−1−1

j · · · upi−pi−1
i · · · u(pm−1)−pm−1

m ,

for all i = 2, . . . , m − 1.
Applying successively (A.2), (A.1) and (A.2) a second time, we deduce (4.6).
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Finally, we get (4.7) by differentiating ∂um
Hpm

with respect to um and applying
successively (A.2), (A.1) and (A.2) a second time. �

Proof of lemma 3. We prove this lemma inductively.
For m = 2, we have K2

2 = det 2.
For m = 3, by using the well-known Dodgson condensation which has been modified

[13] on the symmetric 3-square matrix,

det 1 det 3 = det 2 det
1�i,j�3

[
(ai,j ) i �=2

j �=2

]
−
[

det
1�i,j�3

[
(ai,j ) i �=3

j �=2

]]2

, (A.3)

but

det 2 = K2
2 , det

1�i,j�3

[
(ai,j ) i �=2

j �=2

]
= a11a33 − (a13)

2 = K2
3

and

det
1�i,j�3

[
(ai,j ) i �=3

j �=2

]
= a11a23 − a12a13 = H 2

3 .

Formula (A.3) will become

det 1 det 3 = K2
2 · K2

3 − [H 2
3

]2
.

So by using formula (4.8a), formula (4.8) will be correct for m = 3.
When m � 4, we suppose formula (4.8) is correct for m − 1,m − 2,m − 3, . . . , 4 and

we prove it for m.
It is sufficient to prove

Km−1
m = det

1�i,j�m

(
(ai,j ) i �=m−1

j �=m−1

)
·

k=m−3∏
k=1

(det k)2(m−K−3)

. (A.4)

By putting l = m − 1 in formula (4.8b), we get

Hm−1
m = det

1�i,j�m

(
(ai,j ) i �=m

j �=m−1

)
·

k=m−3∏
k=1

(det k)2(m−K−3)

. (A.5)

From the inductive proof, we have

K
(m−1)

(m−1) = det(m − 1) ·
k=m−3∏

k=1

(det k)2(m−K−3)

. (A.6)

By putting l = m in formula (4.8a), we get

Km
m = Km−1

m−1 · Km−1
m − (Hm−1

m

)2
, (A.7)

by replacing (A.4), (A.5) and (A.6) in (A.7), we get

Km
m =

k=m−3∏
k=1

(det k)2(m−K−2) · det(m − 2) · det m

= det m ·
k=m−2∏

k=1

(det k)2(m−K−2)

and thus formula (4.8) is correct for m.
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Now, we prove formula (A.4); we may generalize the formula as follows:

Kl
m = det

1�i,j�m

(
(ai,j ) i �=m−1,...,l

j �=m−1,...,l

)
·

k=l−2∏
k=1

(det k)2((l−2)−K)

, l = 3, . . . , m − 1. (A.8)

Also, we prove formula (A.8) inductively. It is a secondary unductively proof included
in the principle inductive proof.

For l = 2, it is evident.
For l = 3, formula (4.8a) will become

K3
m = K2

2 · K2
m − (H 2

m

)2
.

It is evident to make sure that the following are correct:

K2
2 = det 2,

K2
m = det

1�i,j�m

(
(ai,j ) i �=m−1,...,2

j �=m−1,...,2

)
,

H 2
m = det

1�i,j�m

(
(ai,j ) i �=m−1,...,2

j �=m,...,3

)
.

By using the well-known Dodgson condensation which has been modified, we get formula
(A.8) for l = 3.

When l � 4, we suppose formula (A.8) is correct for l − 1 and we prove it for l. Formula
(4.8a) will become

Kl
m = Kl−1

l−1 · Kl−1
m − (Hl−1

m

)2
. (A.9)

According to the principle of inductive proposition, we have

K
(l−1)

(l−1) = det(l − 1) ·
k=l−3∏
k=1

(det k)2(l−K−3); (A.10)

according to the secondary inductive proposition, we have

Kl−1
m = det

1�i,j�m

(
(ai,j ) i �=m−1,...,l−1

j �=m−1,...,l−1

)
·

k=(l−3)∏
k=1

(det k)2((l−3)−K); (A.11)

according to formula (4.8b), we have

Hl−1
m = det

1�i,j�m

(
(ai,j ) i �=m,...,l

j �=m−1,...,l−1

)
·

k=l−3∏
k=1

(det k)2((l−3)−K)

(A.12)

by replacing (A.10), (A.11) and (A.12) in (A.9) and by using the well-known Dodgson
condensation which has been modified, we get formula (A.8) for l. This completes the
secondary inductive proof and thus also the proof of the main theorem. �
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